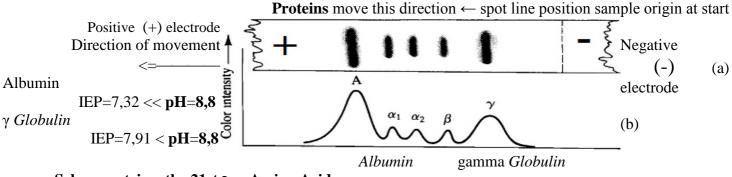
Student self studies Name, Surname_

_Group

21 L-α-Amino Acids proteins polypeptide isoelectric point IEP protolysis pKa value

At physiologic pH=7, 36 ±0.01 carboxylic groups **R-COO**⁻ negative charged and amino groups **R-NH**₃⁺ positive charged. For example, glutamic acid pK_a reference to physiologic pH value smaller as $pK_{aR-COO} = 4.25 < 7.36$, $pK_{aCOO} = 2.19 < 7.36$ and for amine is greater as physiologic pH: 9.67= $pK_{a-NH3+} > 7.36$.

Table shown constants pK_a of four type parallel protolytic equilibria in each amino acid molecule:


acid	⇔ base	$+{\bf H}^+;$	Parallel protolytic equilibria number NpKa average isoelectric point
1. R-COOH	⇔ R-C<mark>OO</mark>⁻	$+\mathbf{H}^{+};$	and constant pK_a value IEP= pK_a is calculated as
2. R-NH ₃ ⁺	⇔R-NH ₂	$+\mathbf{H}^{+};$	$IEP = pK_a = (\Sigma pK_{a R group} + pK_{a-NH3+} + pK_{a-COOH})/NpK_a$
3. Tyr-phenol-OI	I ⇔ Tyr- phenol- O ⁻	$+\mathbf{H}^{+},$	In Ostwald's dilution law calculate pH of solution
4. Cys-SH	⇔Cys- <mark>S</mark> [—]	$+\mathbf{H}^+$	at concentration C logarithm: $pH = \frac{pK_a - \log C}{2} = \dots$

Amino acid and protein at isoelectric point value pH=IEP sum of total overall ion charge is

zero

0——acidic charge (+)——zero "0" charge IEP——in basic medium charge minus (-)—→pH scale
-COOH & -NH ₃ ⁺ positive chargeCOO & -NH ₃ ⁺ charge is negative -COO & -NH ₂
http://aris.gusc.lv/ChemFiles/Albumin/1E7GpI.doc !E7G.pdb;IgG1.pdb
http://aris.gusc.lv/ChemFiles/ChromoHem/MyoGlobOxDeoxCoBiliverdin/1MBOaaLin153.doc ! 1MBO.pdb;

<u>mup.//aris.g</u>	use.iv/ener			
Amino Acid	pKa-C <mark>OO</mark> H	pKa-NH3+	pKa R group	
Isoleucine	2.36	9.68		Biochemistry , University of Virginia 1995
Valine	2.32	9.62		Musslahin IED 7.26 is neutral zone O" showed melecule
Leucine	2.36	9.60		<i>Myoglobin</i> IEP=7,36 is neutral zero ", 0 " charged molecule,
Phenylalanine	1.83	9.13		as IEP=7,36 is equal physiologic pH _{blood} =7,36 1MBO.pdb
Cysteine	1.96	10.28	8.18	Albumin molecule E7G.pdb 7,32=IEP 7 fatty acids small (-) charge and
Methionine	2.28	9.21		7,40=IEP absent 7 faaty acids (+) positive at physiologic pH=7.36, but
Alanine	2.34	9.69		gamma Clabulin IgG1 ndh malagula has positiva (1) charga
Proline	1.99	10.96		gamma <i>Globulin</i> IgG1.pdb molecule has positive (+) charge,
Glycine	2.34	9.60		as at physiologic pH=7.36 is greater IEP=7.91.
Threonine	2.11	9.62		Iso electric point IEP= pK_a as well protolytic constant pK_a
Serine	2.21	9.15		calculates one of side residues R constants sum $\Sigma p K_{aRside residue}$
Tryptophan	2.38	9.39		plus pK _{aNterminusNH3+} and plus pK _{aCterminusCOO-}
Tyrosine	2.20	9.11	10.07	sum dividing with number NpKa of acidic groups in molecule
Histidine	1.82	9.17	6.00	
Aspartate	1.88	9.60	3.65	$IEP = pK_a = (\sum pK_{aR \text{ side residue}} + pK_{aNterminus} + pK_{aCterminus}) / NpKa$
Glutamate	2.19	9.67	4.25	Figure Separation of serum proteins by electrophoresis.
Asparagine	2.02	8.80		(a) A sample is applied as a narrow line at the origin. After
Glutamine	2.17	9.13		electrophoresis at pH 8.8, the paper is dried and stained.
Lysine	2.18	8.95	10.53	(b) A plot of color intensity of each spot.
Arginine	2.17	9.04	12.48	γ <i>Globulin</i> moves slower as <i>Albumin</i> .
-		-		

Seleno cysteine, the 21st L-a-Amino Acid

Seleno cysteine is an L- α -amino acid found in a handful of proteins, including certain **peroxidases** and **reductases** where it participates in the catalysis of electron transfer reactions. As its name implies, a selenium Se atom replaces the sulfur S of its structural analog, cysteine. The p K_3 of seleno cysteine 5.2 is 3 units lower than that of cysteine 8.18. Since seleno cysteine is inserted into polypeptides during translation, it is commonly referred to as the "21st amino acid." However, like the other 20 genetically encoded amino acids, seleno cysteine is specified by a simple three-letter codon UGA (see class 16 week Nucleo proteins tRNA 62 codons).

Student self studies Name, Surname_

Table The 20 common L-a-amino acids found in protein.

CW Clock Wise

Group

Draw fisher projections for 3D molecules Harper's Biochemistry table-3 on 15-16 page wrong D- to L-a-amino acids to fill table right side:http://aris.gusc.lv/06Daugavpils/Research/Amineac20L.doc, as L-a-amino acids! Santa Barbarbara University 3D molecules:http://aris.gusc.lv/ChemFiles/MCDB108A/tw-amn/aasframes.htm.

Harper's Biochemistry Illustrated Table 3-1 shows D-amino acids Fisher projections, which are wrong for Your task is in **Table** right side to show L-a-amino acids human organism proteins. $\mathbf{R} \underbrace{- \underbrace{\mathbf{H}}_{\mathbf{C}} \mathbf{C}}_{\mathbf{H} - \underbrace{\mathbf{N}}_{\mathbf{H}}^{+}} \mathbf{C}_{\mathbf{H}} \mathbf{C} - \mathbf{O}^{-}$

L-rz-amino acids Fisher projections CCW Counter Clock Wise Levos rotational \mathbf{R} \mathbf{C} \mathbf{C}

L-a-amino acids Fisher projections CCW Counter Clock

Protein-derived Amino Acids	Name Symbol		Show Fisher projection Structural Formula		
with aliphatic side chains left side 1	Glycine	Gly [G]			
2	Alanine	Ala [A]			
3	Valine	Val [V]			
4	Leucine	Leu [L]			
5 With side choine containing bydrow	Isoleucine	Ile [I]			
With side chains containing hydroxy left side	T (— OH) group	S			
6	Serine	Ser [S]			
7	Threonine	Thr [T]			
18	Tyrosine	Tyr [Y]	Show below ↓.		
With side chains containing Sulfur a	toms (— <mark>S</mark> — ; –	– <mark>SH</mark>) ∣	I		
left side					
8	Cysteine	Cys [C]			
9	Methionine	Met [M]			

Physiologic pH=7.36.

 Table The 20 common L-ca-amino acids found in protein.

Group

Physiologic pH=7.36.

	Name		Show Fisher projection Structural Formula				
With side chains containing Acidic (-		s or their A	mides (—CO—NH ₂)				
left side 10	Aspartate Aspartic acid salt	Asp [D]					
11	Asparagine	Asn [N]					
12	Glutamate Glutamic acid salt	Glu [E]					
13	Glutamine	Gln [Q]					
With side chains containing Basic (–	- <mark>NH_n(+)) Grour</mark>)S					
left side	, <u></u>						
14	Arginin	Arg [R]					
15	Lysine	Lys [K]					
16	Histidine	His [H]					
Containing Aromatic Rings 16 left side	Histidine	His [H]	Show above ↑				
17	Phenylalanine	Phe [F]					
18	Tyrosine	Tyr [Y]					
19	Tryptophan	Trp [W]					
Imino Acid 20	Proline	Pro [P]					

Name	Symbol	Structural Formula	р <i>К</i> 1	рK ₂	рК₃
With Aliphatic S			<u>α-COOH</u>	α-NH₃ ⁺	R Group
Glycine Alanine	Gly [G] Ala [A]	H - CH - COO ⁻ NH ₃ + CH ₃ - CH - COO ⁻ NH ₃ +	2.4 2.4	9.8 9.9	
Valine	Val [V]	H ₃ C CH - CH - COO ⁻ H ₃ C NH ₃ + H ₃ C	2.2	9.7	
Leucine	Leu [L]	CH-CH ₂ -CH-COO ⁻ H ₃ C NH ₃ ⁺	2.3	9.7	
Isoleucine	lle [l]	CH ₃ CH ₂ CH - CH - COO ⁻ CH - CH - COO ⁻ CH ₃ NH ₃ +	2.3	9.8	
With Side Chain Serine	<mark>s Containing H</mark> Ser [S]	ydroxylic (OH) Groups CH2 — CH — COO ⁻	2.2	9.2	about 13
Threonine	Thr [T]	он Nн₃+ сн₃— сн—сн — соо- I I он Nн₃+	2.1	9.1	about 13
Tyrosine	Tyr [Y]	See below.			
With Side Chain Cysteine	s Containing S Cys [C]	ulfur Atoms CH₂—CH — COO ⁻ I I SH NH₃ ⁺	1.9	10.8	8.3
Methionine	Met [M]	СН ₂ — СН ₂ —СН — СОО ⁻ I I S— СН ₃ NH ₃ +	2.1	9.3	
With Side Chain Aspartic acid	<mark>s Containing A</mark> Asp [D]	cidic Groups or Their Amides - OOC — CH2 — CH — COO- I NH3+	2.0	9.9	3.9
Asparagine	Asn [N]	$H_2N - C - CH_2 - CH - COO^-$ $H_2N - C - CH_2 - CH - COO^-$ $H_2N - C - CH_2 - CH - COO^-$ $H_3 + C - CH_2 - CH - COO^-$	2.1	8.8	
Glutamic acid	Glu (E)	"ООС — СН₂ — СН₂ <mark>— СН — СОО"</mark> NH₃+	2.1	9.5	4.1
Glutamine	Gln [Q]	H ₂ N— C— CH ₂ — CH ₂ — CH — COO ⁻ II I O NH ₃ +	2.2	9.1	
					(continued)

(continued)

15

16 / CHAPTER 3

Table 3–1.	L-α-Amino acids present in proteins. (continued)	
------------	--	--

Name	Symbol	Structural Formula	рК ₁	pK ₂	р <i>К</i> 3
With Side Chair		asic Groups	α-COOH	α-NH₃ ⁺	R Group
Arginine	Arg [R]	$H - N - CH_2 -$	1.8	9.0	12.5
		C = NH ₂ ⁺ NH ₃ ⁺			
		NH ₂			
Lysine	Lys [K]	CH ₂ — CH ₂ — CH ₂ — CH ₂ — CH — COO ⁻ I NH ₃ ⁺ NH ₃ ⁺	2.2	9.2	10.8
,	,	NH3 ⁺ NH3 ⁺			
Histidine	His [H]		1.8	9.3	6.0
Containing Aro		t			
Histidine	His [H]	See above.			
Phenylalanine	Phe [F]	СН2 - СН2 - СН - СООТ	2.2	9.2	
,		CH2 - CH - COO ⁻			
Tyrosine	Tyr[Y]		2.2	9.1	10.1
		HO			
Tryptophan	Trp[W]		2.4	9,4	
		CH ₂ - CH - COO ⁻ I NH ₃ ⁺			İ
		N NH3 ⁺			İ I
lmino Acid					
Proline	Pro [P]		2.0	10.6	
		N COO H ₂			

16