Mechanism of Enzyme Kinetics

However, the central approach to studying the mechanism of an enzyme-catalyzed reaction is to determine the *rate* of the reaction, a discipline known as **enzyme kinetics** (**enzymology**), between enzyme **E** and substrate **S**:

$$
E + S
$$
\n
$$
E + S
$$
\n
$$
= \frac{k}{2} + P
$$
\n
$$
= \frac{1}{2} \tag{1}
$$

Michaelis and Menten derived this equation starting from their basic hypothesis that the rate-limiting step in enzymatic reactions is the breakdown of the **ES** complex to **product** (**P**) and free enzyme **E**. The equation is

$$
V_0 = \frac{V_{max}[S]}{K_m + [S]}
$$
 (2)

For reactions **(1)** with two steps reactions constants **k1**, **k-1**, **k²** Michaelis's constant expression is

$$
\mathbf{K_m} = \frac{\mathbf{k}_2 + \mathbf{k}_{-1}}{\mathbf{k}_1} \tag{3}
$$

In the case, most of the enzyme is in the **ES** mediate form at saturation , and

maximum velocity is expressed as $V_{max} = k_{cat}[E]$. When substrate concentration is high $[S] >> K_{nn}$. Equation 2 reduces to the zero-order $[S]^0$ reaction rate form $V_0 = V_{max}$. The constant \bf{k}_{cat} is a first-order rate constant and hence has units of reciprocal time $1/s$ or s^{-1} . It is also called **turnover number**. Equation 2 becomes

$$
V_0 = \frac{k_{cat}[E_t][S]}{K_m + [S]}
$$
 (4)

The best way to compare the catalytic efficiencies of different enzymes **Eⁱ** or the **turnover** of different substrates **Sⁱ** to products **Pⁱ** is to compare the ratio **kcat/Km** for the two reactions. This parameter, sometimes called the **specificity constant**, is the rate constant for the conversion of $\mathbf{E_i} + \mathbf{S_i}$ to $\mathbf{E_i} + \mathbf{P_i}$. When substrate concentrations are low $[S_i] \ll K_m$. Equation 4 reduces to the first-order $[S_i]$ ¹ reaction, if $[E_i]$ = constant:

$$
V_0 = \frac{k_{cat}}{K_m} [E_i][S_i] ; \qquad E_i + S_i \rightarrow E_i + P_i \qquad (5)
$$

Vo in this case depends on the concentration of two reactants, **[E^t]** and **[S]**; therefore this is a second-order rate equation and the constant **kcat/K^m** is a second-order rate constant with units **M-1s -1**. As upper limit **108** to **109 ^M-1s -1** is value **kcat/Km**, imposed at the rate at which **E** and **S** can diffuse together in an aqueous solution. Such enzymes are said to have achieved **catalytic perfection**. One of moste active enzyme CAT.

$$
\uparrow \text{V, M/s} \qquad \text{CATALASE} \qquad \text{V}_{\text{max}} = \text{k}_{\text{cat}}[\text{E}] = 40 \text{ M/s if } [\text{E}] = 1 \cdot 10^{-6} \text{ M} \& \text{k}_{\text{cat}} = 4 \cdot 10^{7} \text{ M/s}
$$

2016 Āris Kaksis **Riga Stradin's University**: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Enzyme	Substrate	k_{cat} , s ⁻¹	K_m , M	$\mathbf{k}_{cat}/\mathbf{K}_{m}$, $M^{-1}s^{-1}$
Acetyl cholinesterase	Acetylcholine	$1.4 \cdot 10^{4}$	$9 \cdot 10^{-5}$	$1.6 \cdot 10^8$
Hexokinase (brain)	ATP		$4•10^{-4}$	
RecA protein (an ATPase)	ATP	$4 \cdot 10^{-1}$		
	D-Glucose		$5 \cdot 10^{-5}$	
	D-Fructose		$1.5 \cdot 10^{-3}$	
Carbonic anhydrase	CO ₂	1•10 ⁶	$1.2 \cdot 10^{-2}$	$8.3 \cdot 10^{7}$
	HCO ₃	$4 \cdot 10^5$	$2.6 \cdot 10^{-2}$	$1.5 \cdot 10^{7}$
Catalase	H_2O_2	$4 \cdot 10^{7}$	1.1	4•10 ⁷
Chymotrypsin	Glycyl-tyrosinyl-glycine		$1.08 \cdot 10^{-1}$	
	N-Benzoyl-tyrosin-amide		$2.5 \cdot 10^{-3}$	
Crotonase	Crotonyl-CoA	$5.7 \cdot 10^3$	$2 \cdot 10^{-5}$	$2.8 \cdot 10^8$
Fumarase	Fumarate	$8 \cdot 10^2$	$5 \cdot 10^{-6}$	$1.6 \cdot 10^8$
	Malate	$9 \cdot 10^2$	$2.5 \cdot 10^{-5}$	$3.6 \cdot 10^{7}$
β -Lactamase	D-Lactose		$4 \cdot 10^{-3}$	
β -Galactosidase	Benzyl-penicillin	$2.0 \cdot 10^{3}$	$2 \cdot 10^{-5}$	1•108
Threonine dehydratase	L-Threonine		$5 \cdot 10^{-3}$	
Triose phosphate isomerase	Glyceraldehyde 3-phosphate	$4.3 \cdot 10^3$	$4.7 \cdot 10^{-4}$	$2.4 \cdot 10^8$

<code>Table 1. Enzymes for Which k $_{\rm cat}/\rm K_m$ is Close to the Diffusion-Controlled Limit (10 8 to 10 9 M⁻¹s⁻¹)</code>

Source: Fersht Alan (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York

Diffusion

Diffusion is spontaneous mix of molecules due to thermal motion, that results in random distribution molecules along one phase medium. First **Fik's** law for molecule **diffusion rate v_{dif}** is the mass of compound **dm = dn•MW**, that during time interval **dt** diffuse through crossection **S** in units **cm²** , wich proportional to concentration gradient **dC/dx** per distance **dx** unit **1 cm** :

$v_{\text{dif}} = dm/dt = dn \cdot MW/dt = D \cdot S \cdot - dC/dx$

preceding minus **-** exhibit positive **diffusion** along concentration gradient decrease **- dC/dx** direction, where $\Delta C = C_2 \cdot C_1 < 0$; $C_2 < C_1$ is negative and $\Delta x = x_1 \cdot x_2 > 0$; $x_2 > x_1$ is the positive distance mesure.

dn - compound amount - the number of moles **dn** moved along gradient, **mol**.

If assumes one, that $S = 1$ cm² and per 1 cm distance along dx is $-dC/dx = 1$ M/ cm, than diffusion rate:

$$
v_{\text{dif}} = dm/dt = dn \cdot MW/dt = D \cdot 1 \, \text{cm}^2 \cdot 1 \, \text{M} / \, \text{cm} \, ;
$$

molecular diffusion rate v_{dif} /mol = dn/dt = D / MW { cm^2/s ·mol/g·mol/dm³ cm^2 ·g/mol/cm = $mol/s \cdot 10^{-3}$ }

through $S = 1$ cm² and per 1 cm distance. MW / D {mol⁻¹•s⁻¹ } maximum possible reaction velocity limited by diffusion, that molecules **E** and **S** dock together as active intermediate complex **ES** in an aqueous solution.

	Molar	Coefficient	Ratio,			Molar	coefficient	Ratio			
Compound		weight, of diffusion,	D/MW,	MW/D,	Compound weight,		of diffusion,	$DMW\cdot 10^5$,	DMW		
	g/mol	$D•10^7$, cm ² /s	$mol/s•10-3$	$mol^{-1}s^{-1}10^8$		g / mol	$D•10^7$, cm ² /s	$mol/s•10-3$	$mol^{-1}s^{-1}10^{12}$		
Water $H2O$ 18.016		107.55	5.969827	0.167509		Sucrose 342.296	38.0	11101.5	0.000901		
25° C Oxygen 32.000		Q_2 , 260.00	8.125000	0.123077	Tripsin	23800	9.50	39.9200	0.250526		
$CarbDiOxide$ 44.01		CO ₂ 160.00	3.635537	0.275062	Pepsin	34500	9.00	26.0900	0.383333		
25°CBicarbonate 84,008		125.49	1.493809	0.669430	Ovalbumin	43800	7.70	17.5800	0.568831		
$HCO3-$	Urea 60.062	110.00	1.831441	0.546018		Catalase 232000	4.10	1.7670	0.565854		
				0.535537	Urease	480000	3.50	0.7292	1.371429		
14.8 °C Urea 60.062		112.15	1.867283								
Glycerol 92.094		73.0	0.792668	1.261562	Hemoglobin	64500	7.0	1.0853	0.921429		

Table 2. Molecular compounds coefficients of diffusion.

2016 Āris Kaksis **Riga Stradin's University**: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Reaction Rates The Journal of Biological Chemistry. Vol273.No.41.Issue of October 9.pp.26257-26260.1998 © 1998 by American Society for Biochemistry ands Molecular Biology. Inc. Printed in U.S.A.

Both experimental and theoretical studies have shown that reaction are often retarded by the solvent when compared with a similar gas phase reaction. Table 3. compares rates for the S_n 2 displacement reaction, **CH₃Br** + **CI⁻=> CH₃CI** + **Br**⁻, in solvents of differing polarity and dielectric response, including a «null» solvent, the gas phase environment. The effect of solvent is to retard the rate relative to what would be observed for this reaction under the same conditions in the gas phase.

Table 3. Reaction rates an S_n2 reaction in various solvents of differing dielectric response and polarity, including the gas phase reaction.

Enzymes Are Pre-organized for Reaction

In contrast to reactions in solutions, the enzymic environment is pre-organized to be complementary to the transition state configuration of the reactants, and as a result the reorganization penalty is relatively small. As an example consider the possible events that can occur while a reactant is bound to the active site of an enzyme. Protein conformational change can occur on a wide range of time scales as shown in Table 4.

ng electron S_{\bullet}

motions are the tions occurring er of tens to of femto seconds \cdot **13** s. sal frequency s, which is used in tate theory zewise occurs on o second time

In contrast the rotation of a tyrosine Tyr ring in the interior of a protein occurs on the second to sub millisecond time scale. During this time reactive motions associated with k_BT/h can occur up to 10^{13} times, although not all such motions would result in a reaction. If enzyme catalysis were dependent on a conformational change such as ring flipping, then the rate-limiting step would be the motion of the ring; dynamical effects resulting from bond vibrations would be masked by the conformation change.

For Escherichia coli dihydro folate reductase, the chemical reaction occurs on the millisecond time scale, which is sufficient time for many conformational changes to occur that could induce the reaction. If this were the case, then the triggering conformational should mask any effects from faster degrees of freedom such as bond vibrations. However, the reaction rate measured under pre steady-state conditions **1000 s-1**, Table 4. exhibits a deuterium isotope effect of 3, which stems from changes in the nature of a bond vibration. One can conclude that no kinetically significant reorganization of the enzyme-substrate-cofactor Michaelis-Menten's complex is necessary for catalysis to occur.

2016 Āris Kaksis **Riga Stradin's University**: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Arrhenius velocity constant **k** \rightarrow expression explain dependence on reaction velocity of CATALASE activity \rightarrow **Ea** using: the activation energy **Ea**,

k $=$ **A**•**e** RT the pre exponential - geometric factor **A** and the temperature **T** influence on it. Activation energy $E_{aCATALASE}$ =29 J/mol for CATALASE decreases to compare absence catalyst **Ea(absence catalyst)** =79000 J/mol as 79000/29=2724 times smaller **Ea**. Geometric factor **Aabsence catalyst=0.01** for CATALASE $A_{CATALASE} = 0.13$ times $0.13/0.01 = 13$ times increases pre exponential geometric factor A_{CATALASE} . Physical meaning has Bolzman exponential factor value $0.988 = \exp(-E_a/(RT))$. **H**

$$
\overrightarrow{k} = A \bullet e^{-\frac{Ea}{RT}} = A \bullet 0.988 \begin{bmatrix} \overrightarrow{P} \\ \overrightarrow{Q} \\ \overrightarrow{P} \\ \overrightarrow{H} \end{bmatrix}
$$

Physical meaning has pre exponential-geometric factor, react compound molecules geometric structure for correct molecule collisions geometry of peroxide molecule valence bond distance, angles electron structure! Velocity increase CATALASE for 1mol

peroxide H_2O_2 conversion to biological goods $O_2 + H_2O + O$ in process $O_2 + H_2O + O$ oxygen+water+heat

$$
\sqrt{v} = C4 \sqrt{\frac{1}{k}} e^{-\frac{C4 \sqrt{\frac{1}{k}}}{k}} e^{-\frac{C4 \sqrt{\frac{1}{k}}}{k}} \left[\frac{1.9 \cdot 10^{-8}}{1.19 \cdot 10^{-8}} = 30 \cdot 10^{6} \text{ times greater velocity constant}
$$
\n
$$
H_{1} = C \cdot 10^{-4} \text{ m}^{-1} \text{ cm}^{-1} \text{ m}^{-1} \text{ cm}^{-1} \text{ cm}^{-1}
$$

 $H_2O_2 + H_2O_2 + CAT \rightarrow H_2O_2...CAT...H_2O_2 \rightarrow O_2 + H_2O + H_2O + O + CAT$