Mechanism of Enzyme Kinetics

However, the central approach to studying the mechanism of an enzyme-catalyzed reaction is to determine the *rate* of the reaction, a discipline known as **enzyme kinetics** (**enzymology**), between enzyme **E** and substrate **S**:

$$E + S \xrightarrow{\underline{k}}_{-1} ES \xrightarrow{\underline{k}}_{2} \rightarrow E + P$$
(1)

Michaelis and Menten derived this equation starting from their basic hypothesis that the rate-limiting step in enzymatic reactions is the breakdown of the **ES** complex to **product** (**P**) and free enzyme **E**. The equation is

$$\mathbf{V}_{\mathbf{0}} = \frac{\mathbf{V}_{\max}[\mathbf{S}]}{\mathbf{K}_{m} + [\mathbf{S}]} \tag{2}$$

For reactions (1) with two steps reactions constants k_1 , k_{-1} , k_2 Michaelis's constant expression is

$$\mathbf{K}_{\mathbf{m}} = \frac{\mathbf{k}_2 + \mathbf{k}_{-1}}{\mathbf{k}_1} \tag{3}$$

In the case, most of the enzyme is in the **ES** mediate form at saturation, and maximum velocity is expressed as $V_{max} = k_{cat}[E]$. When substrate concentration is high $[S] \gg K_m$. Equation 2 reduces to the zero-order $[S]^0$ reaction rate form $V_0 = V_{max}$.

Equation 2 reduces to the zero-order $[S]^0$ reaction rate form $V_0 = V_{max}$. The constant k_{cat} is a first-order rate constant and hence has units of reciprocal time 1/s or s⁻¹. It is also called **turnover number**. Equation 2 becomes

$$\mathbf{V}_{\mathbf{0}} = \frac{\mathbf{k}_{cat}[\mathbf{E}_{t}][\mathbf{S}]}{\mathbf{K}_{m} + [\mathbf{S}]}$$
(4)

The best way to compare the <u>catalytic efficiencies</u> of different enzymes E_i or the **turnover** of different substrates S_i to products P_i is to compare the ratio k_{cat}/K_m for the two reactions. This parameter, sometimes called the **specificity constant**, is the rate constant for the conversion of $E_i + S_i$ to $E_i + P_i$. When substrate concentrations are low $[S_i] \ll K_m$. Equation 4 reduces to the first-order $[S_i]^1$ reaction , if $[E_i] = \text{constant}$:

$$V_{0} = \frac{k_{cat}}{K_{m}} [E_{i}][S_{i}]; \qquad E_{i} + S_{i} \rightarrow E_{i} + P_{i}$$
(5)

Vo in this case depends on the concentration of two reactants, $[E_t]$ and [S]; therefore this is a second-order rate equation and the constant k_{cat}/K_m is a second-order rate constant with units $M^{-1}s^{-1}$. As upper limit 10^8 to $10^9 M^{-1}s^{-1}$ is value k_{cat}/K_m , imposed at the rate at which E and S can diffuse together in an aqueous solution. Such enzymes are said to have achieved **catalytic perfection**. One of moste active enzyme CAT.

$$\uparrow$$
 V, M/s CATALASE $V_{max} = \mathbf{k_{cat}}[\mathbf{E}] = 40$ M/s if $[\mathbf{E}] = 1 \cdot 10^{-6}$ M & $\mathbf{k_{cat}} = 4 \cdot 10^{7}$ M/s

2016 Āris Kaksis Riga Stradin's University: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Enzyme	Substrate	$\mathbf{k_{cat}}$, s ⁻¹	K _m , M	$\mathbf{k_{cat}}/\mathbf{K_m}$, M ⁻¹ s ⁻¹
Acetyl cholinesterase	Acetylcholine	$1.4 \bullet 10^{4}$	9•10 ⁻⁵	1.6•10 ⁸
Hexokinase (brain)	ATP		4•10 - 4	
RecA protein (an ATPase)	ATP	4•10 ⁻¹		
	D-Glucose		5•10 ⁻⁵	
	D-Fructose		1.5•10 ⁻³	
Carbonic anhydrase	CO ₂	1•106	1.2•10 ⁻²	8.3•107
·	HCO ₃ -	4•10 ⁵	2.6•10 ⁻²	1.5•107
Catalase	H_2O_2	4•107	1.1	4•10 ⁷
Chymotrypsin	Glycyl-tyrosinyl-glycine		1.08•10-1	
• • • •	N-Benzoyl-tyrosin-amide		2.5•10 ⁻³	
Crotonase	Crotonyl-CoA	5.7•10 ³	2•10 ⁻⁵	2.8•10 ⁸
Fumarase	Fumarate	8•10 ²	5•10 ⁻⁶	1.6•10 ⁸
	Malate	9•10 ²	2.5•10 ⁻⁵	3.6•107
β-Lactamase	D-Lactose		4•10 ⁻³	
β-Galactosidase	Benzyl-penicillin	2.0•10 ³	2•10 ⁻⁵	1•10 ⁸
Threonine dehydratase	L-Threonine		5•10 ⁻³	
Triose phosphate isomerase	Glyceraldehyde 3-phosphate	4.3•10 ³	4.7•10-4	$2.4 \cdot 10^8$

Table 1. Enzymes for Which k_{cat}/K_m is Close to the Diffusion-Controlled Limit (10⁸ to 10⁹ M⁻¹s⁻¹)

Source: Fersht Alan (1999) Structure and Mechanism in Protein Science, p. 166, W. H. Freeman and Company, New York

Diffusion

Diffusion is spontaneous mix of molecules due to thermal motion, that results in random distribution molecules along one phase medium. First **Fik's** law for <u>molecule</u> **diffusion rate** v_{dif} : is the mass of compound $dm = dn \cdot MW$, that during time interval dt diffuse through crossection S in units cm^2 , wich proportional to concentration gradient dC/dx per distance dx unit 1 cm :

$v_{dif} = dm/dt = dn \cdot MW/dt = D \cdot S \cdot - dC/dx$

 cm^2/s :

preceding minus - exhibit positive **diffusion** along concentration gradient decrease - dC/dx direction, where $\Delta C = C_2 - C_1 < 0$; $C_2 < C_1$ is negative and $\Delta x = x_1 - x_2 > 0$; $x_2 > x_1$ is the positive distance mesure. **MW** - molar mass of molecule, **g/mol**;

MW	<i>V</i> - molar mass of molecule,	
D	- coefficient of diffusion	

D - coefficient of **diffusion**,

dn - compound amount - the number of moles **dn** moved along gradient, **mol**.

If assumes one, that $S = 1 \text{ cm}^2$ and per 1 cm distance along dx is - dC/dx = 1 M/ cm, than diffusion rate:

$v_{dif} = dm/dt = dn \cdot MW/dt = D \cdot 1 cm^2 \cdot 1 M/cm$;

molecular diffusion rate $v_{dif}/mol = dn/dt = D / MW$ {cm²/s•mol/g•mol/dm³ cm²•g/mol/cm = mol/s•10⁻³}

through $S = 1 \text{ cm}^2$ and per 1 cm distance. MW / D {mol⁻¹·s⁻¹} maximum possible reaction velocity limited by diffusion, that molecules E and S dock together as active intermediate complex ES in an aqueous solution.

Table 2. Molecular	compounds	coefficients of	of diffusion.
--------------------	-----------	-----------------	---------------

	ccului	compounds	coefficients	or unrusit	J 11.				
	Molar	Coefficient	Ratio,			Molar	coefficient	Ratio	
Compound	weight,	of diffusion,	D/MW,	MW/D,	Compound	weight,	of diffusion,	$D/MW \cdot 10^{5}$,	D/MW
	g / mol	D•10⁷, cm²/s	mol/s•10 ⁻³	mol ⁻¹ s ⁻¹ 10 ⁸		g / mol	D•10⁷, cm²/s	mol/s•10 ⁻³	mol ⁻¹ s ⁻¹ 10 ¹²
Water H_2O	18.016	107.55	5.969827	0.167509	Sucrose	342.296	38.0	11101.5	0.000901
25°C Oxygen	32.000	O ₂ 260.00	8.125000	0.123077	Tripsin	23800	9.50	39.9200	0.250526
CarbDiOxide	44.01	CO ₂ 160.00	3.635537	0.275062	Pepsin	34500	9.00	26.0900	0.383333
25°CBicarbonate	84.008	125.49	1.493809	0.669430	Ovalbumin	43800	7.70	17.5800	0.568831
HC <mark>O3</mark> -	60.062	110.00	1.831441	0.546018	Catalase	232000	4.10	1.7670	0.565854
					Urease	480000	3.50	0.7292	1.371429
14.8°C Urea	60.062	112.15	1.867283	0.535537					
Glycerol	92.094	73.0	0.792668	1.261562	Hemoglobin	64500	7.0	1.0853	0.921429

2016 Āris Kaksis Riga Stradin's University: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Reaction Rates The Journal of Biological Chemistry. Vol273.No.41.Issue of October 9.pp.26257-26260.1998 © 1998 by American Society for Biochemistry ands Molecular Biology. Inc. Printed in U.S.A.

Both experimental and theoretical studies have shown that reaction are often retarded by the solvent when compared with a similar gas phase reaction. Table 3. compares rates for the S_n2 displacement reaction, $CH_3Br + Cl^- > CH_3Cl + Br^-$, in solvents of differing polarity and dielectric response, including a «null» solvent, the gas phase environment. The effect of solvent is to retard the rate relative to what would be observed for this reaction under the same conditions in the gas phase.

Table 3. Reaction rates an S_n^2 reaction in various solvents of differing dielectric response and polarity, including the gas phase reaction.

(Tanaka, K., Mackay, G. I., Payzant, J.D. & Bohme, D. K. (1976) Can.J.Chem.54,1843-1659)

$CH_3Br + Cl^- => CH_3Cl + Br^-$				
Solvent	Relative rate, cm^{3} •molecule ⁻¹ •s ⁻			
Gas phase MeCO Dimethyl-formamide CH_3OH H_2O	1 10 ⁻¹⁰ 10 ⁻¹¹ 10 ⁻¹⁵ 10 ⁻¹⁶			

Enzymes Are Pre-organized for Reaction

In contrast to reactions in solutions, the enzymic environment is pre-organized to be complementary to the transition state configuration of the reactants, and as a result the reorganization penalty is relatively small. As an example consider the possible events that can occur while a reactant is bound to the active site of an enzyme. Protein conformational change can occur on a wide range of time scales as shown in Table 4.

Table 4. The time scales of various dynamic protein events that can occur in an enzyme complexes
(McCammon, J.A., & Harvey, S.C. (1987) Dynamics of Proteins and Nucleic Acids, Cambridge University Press, New York).

Motion	Time scale logaritm, log ₁₀ (s)	Negle dynar
Bond vibration The universal frequency factor kT/h Elastic vibration of globular region Sugar re puckering Rotation of side chains at surface Torsional liberation of buried groups Stern-Volmer energy transfer of DHFR* cofactor Hinge bending Protein breathing motions Rotation of medium sized side chains in interior Allosteric transitions Local denaturation E. coli DHFR catalysis (1/k _{hydride})	-14 to -13 -13 -12 to -11 -12 to -9 -11 to -10 -11 to -9 -9 -11 to -7 -4 to 0 -5 to 0 -5 to 1 -3	the faste bond vi on the c hundred $10^{-14} \div$ The uni factor k commo transitio analyze the sub scale.
Allosteric transitions Local denaturation	-5 to 0 -5 to 1	the s

Neglecting electron dynamics,

the fastest motions are the bond vibrations occurring on the order of tens to hundreds of femto seconds $10^{-14} \div 10^{-13}$ s. The universal frequency factor kT/h, which is commonly used in transition state theory analyze, likewise occurs on the sub pico second time scale.

In contrast the rotation of a tyrosine Tyr ring in the interior of a protein occurs on the second to sub millisecond time scale. During this time reactive motions associated with k_BT/h can occur up to 10^{13} times, although not all such motions would result in a reaction. If enzyme catalysis were dependent on a conformational change such as ring flipping, then the rate-limiting step would be the motion of the ring; dynamical effects resulting from bond vibrations would be masked by the conformation change.

For Escherichia coli dihydro folate reductase, the chemical reaction occurs on the millisecond time scale, which is sufficient time for many conformational changes to occur that could induce the reaction. If this were the case, then the triggering conformational should mask any effects from faster degrees of freedom such as bond vibrations. However, the reaction rate measured under pre steady-state conditions **1000 s-1**, Table 4. exhibits a deuterium isotope effect of 3, which stems from changes in the nature of a bond vibration. One can conclude that no kinetically significant reorganization of the enzyme-substrate-cofactor Michaelis-Menten's complex is necessary for catalysis to occur.

2016 Āris Kaksis Riga Stradin's University: http://aris.gusc.lv/BioThermodynamics/EnzymeKinetics.doc

Arrhenius velocity constant \mathbf{k} expression explain dependence on reaction velocity of CATALASE activity $\rightarrow -\underline{\mathbf{Ea}}$ using: the activation energy $\mathbf{E_a}$,

k =A•**e** ^{**RT**} the pre exponential - geometric factor **A** and the temperature **T** influence on it. Activation energy $\mathbf{E}_{aCATALASE} = 29$ J/mol for CATALASE decreases to compare absence catalyst $\mathbf{E}_{a(absence \ catalyst)} = 79000$ J/mol as 79000/29=2724 times smaller \mathbf{E}_{a} . Geometric factor $\mathbf{A}_{absence \ catalyst} = 0.01$ for CATALASE $\mathbf{A}_{CATALASE} = 0.13$ times 0.13/0.01 = 13 times increases pre exponential geometric factor $\mathbf{A}_{cATALASE}$. Physical meaning has Bolzman exponential factor value $0.988 = \exp(-\mathbf{E}_{a}/(\mathbf{RT}))$.

$$\overrightarrow{\mathbf{k}}_{=\mathbf{A}\bullet} \mathbf{e}^{-\frac{\mathbf{E}\mathbf{a}}{\mathbf{R}\mathbf{T}}} = \mathbf{A}\bullet 0.988 \overset{\mathbf{H}}{\overset{\mathbf{O}}{\overset{\mathbf{H}}{\overset{\mathbf{H}}{\mathbf{C}}}} = \mathbf{A}\bullet \mathbf{O}.988 \overset{\mathbf{H}}{\overset{\mathbf{H}}{\mathbf{H}}}$$

Physical meaning has pre exponential-geometric factor, react compound molecules geometric structure for correct molecule collisions geometry of peroxide molecule valence bond distance, angles electron structure! Velocity increase CATALASE for 1mol

peroxide H_2O_2 conversion to biological goods O_2+H_2O+Q in process O_2+H_2O+Q oxygen+water+heat

 $H_2O_2 + H_2O_2 + CAT \rightarrow H_2O_2...CAT...H_2O_2 \rightarrow O_2 + H_2O + H_2O + Q + CAT$