Instructor: Dr. Natalia Tretyakova, Ph.D. «hyperlink "mailto:[email protected]    -   6-3432
 PDB reference correction and design Dr.chem., Ph.D. Aris Kaksis, Associate Prof. mailto:[email protected]

Transcription                                             Transcription Translation
Translation
 
Antisense therapy: a new generation of drugs? 
 

 
Potential advantages of antisense drugs:
1.Specificity.
2.Facilitated drug development process.
3.Reduced side effects.
 
Problems associated with antisense drugs:
 
1. Delivery through cell membranes.
2. Degradation with nucleases.
3. Possibility of severe side effects in some individuals.
 
Figure 2. Therapeutic Nucleic Acids 
 


Replacement of oxygen O by sulfur S in each phosphate group (above) makes the beckbone resistant to nucleases, which would otherwise cut the bridges. However, the macromolecule remains electrically charged, impeding its passage across cell membrane. The entire backbone can be replaced with a chain resambling protein (bottom). The result is nuclease-resistant and the bases retain correct alignment. However, this construct, too, does not readily cross cell membrane.
 
Vitravene (Isis Pharmaceuticals, 1998) 
 ¤ used against cytomegalovirus (herpes infection on the eye) in AIDS patients
 ¤ Phospho-thiolate oligonucleotide: 5’-GCGGCCCCGCG-3’
 ¤ Mechanism: binds mRNA coding for the protein required for viral replication and causes its degradation
                                                                                                                                                   with RNAase H.

 
Protein Synthesis Part 1: Take Home Message
 
Required reading: Stryer Ch. 34, p. 875-888 Ch. 33 p. 849-850
 1) Translation of the genetic code is dependent on three base words that correspond to a single amino acid
            (AA codons).
 2) The mRNA message is read by tRNA through the use of a three base complement to the three base word
            (anticodon).
 3) A specific amino acid is conjugated to a specific tRNA.
 4) Amino acid AA side chain size, hydro-phobicity and polarity govern the ability of tRNA synthetases
                                                          to conjugate a specific three base message with a specific amino acid AA.
 
How do we go from mRNA to Protein?
 
DNA ----> mRNA -------------> Proteine
   t-RNA  ---->|| Amino Acid Sequence­
 
Translating the Message
 
DNA           5'-AG-GCC--GA-C-AAA-AA-3' 
RNA           5'-AG-GCC--GA-C-AAA-AA-3' 
Protein      N-- met     ala      phe      asp       ser     lys     stop -C 
 
Translation of mRNA
 
            Sequence of 3 Bases = One Codon
                            One Codon = One Amino Acid AA
  20 Natural Amino Acids AA = 64 Codons
 
“Degenerate Code: Several Different Codons per Amino Acid AA
 
Table 1. The genetic code. for mRNA Y                                                     Genetic Code
 
1st position 2nd position 3rd position
(5' end)--> C A G (3' end)-->
Phe
Phe
Leu
Leu
Ser
Ser
Ser
Ser
Tyr
Tyr
STOP
STOP
Cys
Cys
STOP SelenoCys Trp Mitochondria
Trp

C
A
G
C Leu
Leu
Leu
Leu
Pro
Pro
Pro
Pro
His
His
Gln
Gln
Arg
Arg
Arg
Arg

C
A
G
A Ile
Ile
Ile
Met init
Thr
Thr
Thr
Thr
Asn
Asn
Lys
Lys
Ser
Ser
Arg
Arg

C
A
G
G Val
Val
Val
Val
Ala
Ala
Ala
Ala
Asp
Asp
Glu
Glu
Gly
Gly
Gly
Gly

C
A
G
 
Sets of three 3 nucleotides (codons) in an mRNA molecule are translated into amino acids AA in the course of protein synthesis according to the rules shown. The codons GG and GAG, for example, are translated into valine and glutamic acid, respectively. Note that those codons with  or C as the second 2 nucleotide tend to specify the more hydrophobic amino acids AA.
 
How do we go from mRNA to Protein?
 

Incoming tRNA
 
Transfer RNA 
 
           Acts as an adaptor molecule between mRNA and peptide sequence
           Contains amino acid AA attachment site and template recognition site 

 
Structure of Transfer RNA
 

    Di-hydro-uridine (DHU)            Anti Codon                       Pseudo-uridine (Y)
 
T-RNA has an L Tertiary Structure
 
    T Loop ||                              || 5’         || 3’ Stem Acceptor
 
                                    ­ Anti-Codon  
 
t-RNA  Formation 
 
           Rnase P                                                                 Rnase P

 
Classes of Aminoacyl-tRNA Synthetases
 
• Class I: Arg, Cys, Gln, Glu, Ile, Leu, Met, Trp, Tyr, Val    (Generally the Larger Amino Acids)
• Class II: Ala, Asn, Asp, Gly, His , Lys, Phe, Ser, Pro, Thr   (Generally the smaller amino acids)   
                                                                        Charged tRNA -76
 
tRNA Activation by aminoacyl tRNA synthases
1. Amino-acyl-AMP formation

2. Aminoacyl transfer to the appropriate tRNA

 
tRNA Synthetase Proofreading Ile  
         Large         Smaller                                                               Large                Smaller
Acylation Site Hydrolytic Site                                                 Acylation Site Hydrolytic Site
¬ Difference ®
                                            
Correct Acylation                                                                                                                         Mis-acylation
 
tRNA Synthetase Proofreading Val
 
Hydrophobic                        Polar                                        Hydrophobic                  Polar
Acylation Site               Hydrolytic Site                            Acylation Site        Hydrolytic Site
¬ Difference ®
                                                   
  Correct Acylation                                                                                                                  Mis-acylation
tRNA Recognition by Synthetases
 
¤     Specific recognition of the anticodon; ex. an change the anticodon for tRNA-Trp to that for methionine and get good acylation by tRNA-Met.
 
¤     Stem sequences can be crucial; ex. TRNA-Ala depends on GC at position 3:70 doesn't care what the codon is.
¤     Both the stem regions and anticodon are needed; ex. TRNA-Gln.
 
tRNA Recognition by Synthetases 
 
 
          Anticodon Recognition ­
Table 1. The genetic code. for mRNA Y                                             Genetic Code
 
1st position 2nd position 3rd position
(5' end)--> C A G (3' end)-->
Phe
Phe
Leu
Leu
Ser
Ser
Ser
Ser
Tyr
Tyr
STOP
STOP
Cys
Cys
STOP SelenoCys Trp Mitochondria
Trp

C
A
G
C Leu
Leu
Leu
Leu
Pro
Pro
Pro
Pro
His
His
Gln
Gln
Arg
Arg
Arg
Arg

C
A
G
A Ile
Ile
Ile
Met init
Thr
Thr
Thr
Thr
Asn
Asn
Lys
Lys
Ser
Ser
Arg
Arg

C
A
G
G Val
Val
Val
Val
Ala
Ala
Ala
Ala
Asp
Asp
Glu
Glu
Gly
Gly
Gly
Gly

C
A
G
 
Sets of three 3 nucleotides (codons) in an mRNA molecule are translated into amino acids AA in the course of protein synthesis according to the rules shown. The codons GG and GAG, for example, are translated into valine and glutamic acid, respectively. Note that those codons with  or C as the second 2 nucleotide tend to specify the more hydrophobic amino acids AA.
 
Codon : Anticodon 
 
First 1st Base of Anticodon is Variable 
||
                   3  2  1  
t RNA-  3'-X Y Z-5' anticodon
mRNA- 5'-X’Y’Z’-3' codon
                   1  2  3
­
Third 3rd Base of Codon is Variable 
 
tRNA Anticodon-Codon Recognition
 
              Adenosine                                Inosine                                                      Guanosine
                                                
 
Anticodon 3’ – C – G – I – 5’                3’ – C – G – I – 5’                    3’ – C – G – I – 5’
Codon       5’ – C – G – C – 3’               5’ – C – GA3’                   5’ – C – G 3’
 
         
              I------C  base pair       I-----A  base pair          I-----  base pair
 
tRNA Anticodon-Codon Recognition 
 
Anticodon 3’ – C – G  I – 5’               3’ – C – G  I – 5’                   3’ – C – G  I – 5’
Codon       5’ – C – G3’               5’ – C – G – C – 3’                   5’ – C – GA3’
 
Anticodon 3’ – C – GG5’               3’ – C – GG5’
Codon       5’ – C – G3’               5’ – C – G – C – 3’
 
Anticodon 3’ – C – G5’               3’ – C – G5’
Codon       5’ – C – GA3’               5’ – C – G – G – 3’
 
Anticodon 3’ – C – G – C – 5’               3’ – C – GA5’
Codon       5’ – C – G – G – 3’               5’ – C – G3’
 
Protein Synthesis Part 1: Take Home Message
 
1) Translation of the genetic code is dependent on three base words
                                                                                                   that correspond to a single amino acid.

 2) The mRNA message is read by tRNA through the use of a three base complement to the
                                                                                                                                              three base word.

 3) A specific amino acid is conjugated to a specific tRNA (three base word).
 4) Amino acid side chain size, hydrophobicity and polarity govern the ability of tRNA synthetases
                                       to conjugate a specific three base message with a specific amino acid.